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Novel temperature modeling and compensation method for
bias of ring laser gyroscope based on least-squares support
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Bias of ring-laser-gyroscope (RLG) changes with temperature in a nonlinear way. This is an important
restraining factor for improving the accuracy of RLG. Considering the limitations of least-squares regression
and neural network, we propose a new method of temperature compensation of RLG bias−building function
regression model using least-squares support vector machine (LS-SVM). Static and dynamic temperature
experiments of RLG bias are carried out to validate the effectiveness of the proposed method. Moreover,
the traditional least-squares regression method is compared with the LS-SVM-based method. The results
show the maximum error of RLG bias drops by almost two orders of magnitude after static temperature
compensation, while bias stability of RLG improves by one order of magnitude after dynamic temperature
compensation. Thus, the proposed method reduces the influence of temperature variation on the bias of
the RLG effectively and improves the accuracy of the gyro scope considerably.
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The ring-laser-gyroscope (RLG), based on the principle
of Sagnac effect, is a kind of core sensor in inertial sys-
tems which has been widely used in numerous cutting-
edge military fields[1,2]. For gyroscopes in practical engi-
neering, the general requirement is wide range of work-
ing temperature. However, RLG bias is sensitive to envi-
ronmental temperature variation[3,4]. To improve further
the accuracy and performance of RLG, the most effective
way is to establish a practical and effective temperature
model for RLG bias based on experimental data, and
subsequently formulate real-time compensation.

At present, the commonly used method for tempera-
ture compensation of RLG bias is least-squares regres-
sion. However, for the complex non-linear relationship,
the fitting precision of this traditional modeling method
has been limited. In recent years, the neural network
technique has attracted considerable scientific interest
particularly in temperature modeling and compensation
of sensors for its parallel processing, self-learning, and
self-adaptive capabilities in non-linear modeling. How-
ever, the neural network does not have the support of
complete mathematical theory. Thus, the danger of over-
learning and jumping into a local minimum of mean
square error exists which can lead to poor generaliza-
tion capability of the network.

In 1995, Vapnik et al. studied and developed sup-
port vector machine (SVM), a machine learning algo-
rithm based on statistical learning theory (SLT)[1]. To
obtain the best generalization capability, SVM seeks the
best compromise between complexity and learning ability
of a model according to limited sample information[5,6].
SVM has intuitional geometric interpretation and perfect
mathematical form, and it implements the structural risk
minimization (SRM) principle unlike most of the neu-
ral network models which implement the empirical risk

minimization. The training of the SVM is a uniquely
solvable quadratic optimization problem, which means
that the solution of SVM is unique, optimal, and ab-
sent from local minima. With the above-mentioned ad-
vantages, SVM has been applied in the areas of pattern
recognition, regression forecast, and nonlinear control.
However, in application of the standard SVM algorithm,
matrix size is impacted greatly by a number of the train-
ing samples while solving quadratic optimization prob-
lem. This causes the problem of over-large solving scale.
Least-squares SVM (LS-SVM)[7] starts with loss function
of machine learning, applies 2-norm to the objective func-
tion in optimization process, and replaces the inequality
constraint conditions of standard SVM algorithm with
equality constraint conditions. This facilitates conver-
sion of the optimization problem toward solving a set of
linear equations[7,8]. As a new expansion of the stan-
dard SVM, LS-SVM reduces computational complexity
and keeps high fitting accuracy at the same time. We
apply LS-SVM into temperature compensation for the
bias of RLG to obtain better compensation effect and
improve further the accuracy of RLG.

To reflect the influence law of temperature variation on
the bias of RLG completely, it is necessary to study the
output characteristics of RLG in cases of certain fixed
temperature spot and changing temperature. Therefore,
temperature experiments of RLG should include both
static and dynamic tests. The steps in the static temper-
ature test method are as follows: temperature of temper-
ature box is kept constant, the gyro is started, and out-
put data are collected at a certain sampling frequency
until RLG is in a stable working state. Subsequently,
the setting temperature is changed and static tests at
different temperature spots are conducted in accordance
with the above method. Meanwhile, the dynamic tem-
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perature measurement method is performed by setting a
stable variation rate for temperature box to rise or drop
to a preset value. Consequently, the output data of RLG,
temperature value of temperature box, and temperature
value of gyro during the temperature changing process
are recorded.

We suppose that the given training sample set is
{(x1, y1), (x2, y2), · · · , (xl, yl)}, xi ∈ Rn, yi ∈ R, where
i = 1, 2, · · · , l, xi denotes input patterns, yi denotes
the targets, and l denotes the total number of training
samples. For non-linear regression estimation problems,
SVM maps the input sample from the original space into
a high-dimensional feature space through a non-linear
mapping function Φ(x), which can convert the problem
of non-linear function estimation into that of linear func-
tion estimation in high-dimensional feature space. The
optimal decision function of this estimation problem is
denoted as

f(x) = ωT ·Φ(x) + b, (1)

where ωT and b are two unknown variables. For stan-
dard SVM, the convex constrained optimization problem
is described as[5]

min
ω,b,ξ,ξ∗

1
2
ωTω + c

l∑

i=1

(ξi + ξ∗i )

subject to

{
yi − [ωT · Φ(xi) + b] ≤ ε + ξi

[ωT ·Φ(xi) + b]− yi ≤ ε + ξ∗i
, (2)

where ξi ≥ 0, ξ∗i ≥ 0, ξ∗i denotes the upper (lower) train-
ing error at data point (xi, yi), c denotes penalty factor,
and ε denotes the coefficient of regression estimation ac-
curacy.

According to the duality theory of Wolf, a Lagrange
function L is built according to the following equation[8]:

L =
1
2
ωTω + c

l∑

i=1

(ξi + ξ∗i )−
l∑

i=1

(ηiξi + η∗i ξ∗i )

−
l∑

i=1

ai{ε + ξi + yi − [ωT · Φ(xi) + b]} (3)

−
l∑

i=1

a∗i {ε + ξ∗i + yi − [ωT · Φ(xi) + b]},

where a and η are the non-negative Lagrange multiplier
vectors. Then, according to the Karush-Kuhn-Tucker
(KKT) conditions, a and b in Eq. (3) are solved. Finally,
the nonlinear estimation function achieves the following
explicit form:

f(x) =
l∑

i=1

(ai − a∗i ) < Φ(xi),Φ(x) > +b. (4)

The inequality constraints in the standard SVM algo-
rithm are replaced with equality constraints in LS-SVM.
Thus, the optimization problem described by Eq. (2) is
reduced to the problem described as[9]

min
ω,b,ξ,

1
2
ωTω +

c

2

l∑

i=1

ξ∗i

subject to yi − [ωT · Φ(xi) + b] = ξi. (5)

We obtained the ω value in dual space according to ob-
jective function and constraints described in Eq. (5) and
built the Lagrange solving equation as

L =
1
2
ωT ω + c

l∑

i=1

ξ2
i

−
l∑

i=1

ai{ξi + [ωT ·Φ(xi) + b]− yi}. (6)

The optimal Lagrange multiplier vector a =
[a, · · · , al]T can be analyzed and reduced according to
KKT conditions. The reduction procedure is given by:





∂L

∂ωT
= 0 → ωT =

l∑
i=1

aiΦ(xi)

∂L
∂b

= 0 →
l∑

i=1

ai = 0

∂L

∂ξi
= 0 → ξi =

ai

c

∂L

∂ai
= 0 → ωT ·Φ(xi) + b + ξi = yi

. (7)

According to the Mercer’s condition, there are many
possible forms of Kernel function K(x,xi) that meets
K(xi,xj) = ΦT(xi) ·Φ(xj). As the most commonly used
kernel function, Gaussian Kernel function was applied in
this study, and its expression is

K(x,xi) = exp(−||x− xi||2/2σ2), (8)

where σ denotes the Kernel width. Finally, the optimiza-
tion problem is transformed to solve the following linear
equations:



0 1 · · · 1
1 K(x1,x1) + 1/c · · · K(x1,xl)
...

...
. . .

...
1 K(xl,x1) · · · K(xl,xl) + 1/c







b
a1

...
al




=




0
y1

...
yl


 . (9)

The regression function determined by LS-SVM can be
obtained by solving

f(x) =
l∑

i=1

aiK(x,xi) + b. (10)

Model identification is building a function relationship
between input and output of the system. Considering
the relationship of temperature and RLG output bias
as a black box, we can mine the non-linear relationship
between them using the method of LS-SVM. The whole
progress is divided into two steps: training and testing.
After the training of LS-SVM shown in Fig. 1(a), the
black-box model is established. Subsequently, we used
the LS-SVM model shown in Fig. 1(b) to describe the
relationship between RLG bias and temperature. Z rep-
resents the transformation from low dimension space to
high space using the Kernel function K(x,xi).
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Table 1. Static Temperature Test Data of Mechanically Dithered RLG and Bias Modeling Error

Temperature
−40 −30 −20 −10 0 10 20 30 40 50 60

Box (◦C)

Gyroscope
−34.80 −24.89 −14.97 −4.94 5.09 14.80 24.75 33.74 45.05 54.07 63.59

Body (◦C)

Gyroscope
−7.0771 −7.0864 −7.0926 −7.0987 −7.1040 −7.1066 −7.1096 −7.1128 −7.1150 −7.1182 −7.1184

Output (◦/h)

Quadratic Model
−13.8 7.89 5.53 8.33 11.0 −5.56 −11.9 −6.15 −8.86 9.83 3.67

Error (×10−4◦/h)

LS-SVM Model
−1.67 5.01 −4.91 −1.77 7.05 −2.08 −3.32 2.65 −5.34 7.28 −2.81

Error (×10−4◦/h)

Fig. 1. Schematic diagram of (a) training and (b) testing of
LS-SVM.

Mechanically dithered RLG was installed into temper-
ature box. The temperature measurement of RLG was
conducted by fixing a platinum resistance on the RLG.
A temperature spot was taken every 10 ◦C from −40 to
60 ◦C, and data were recorded for an hour after each
temperature spot was kept for two hours. During the
measurement, the data sampling frequency was 1 Hz,
and temperature and bias of RLG were both recorded.

Table 1 shows that the body temperature of RLG is a
few Celsius degrees higher than the setting temperature
of temperature box because of gyro scope’s self-heating.
First, we fit the data in Table 1 by establishing least-
squares quadratic model, and the result is shown in Fig.
2(a). Then, we fit the data again with the method of
LS-SVM regression and obtained the result, as shown in
Fig. 2(b). The errors between the predictive values and
the actual values at fixed temperature spots are shown
in Table 1. From Table 1, the bias values of RLG at high
and low temperature spots differ by 0.0413◦/h, which
is intolerance in the practical applications. The maxi-
mum error of least-squares quadratic model is less than
0.0014◦/h and the maximum error of LS-SVM model
is less than 0.00073◦/h. Obviously, the LS-SVM model

outperforms the least-squares quadratic model.
To investigate the influence of variable temperature

on the bias of mechanically dithered RLG, the dynamic
temperature experiment was completed as follows: the
temperature changing rate of temperature box was set as
1 ◦C per minute and high temperature at 65 ◦C and low
temperature at 10 ◦C, respectively, were kept for 3 h. The
average of every 100 points was given to observe the vari-
ation tendency of bias with the temperature more clearly.

Fig. 2. Static temperature test data fitting of RLG’s bias.
(a) Least-squares quadratic fitting; (b) LS-SVM fitting.

Fig. 3. Sampling curves of gyro bias and gyro scope temper-
ature.
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Fig. 4. Sampling curves of gyro bias and gyro temperature
changing rate.

Fig. 5. Bias dynamic temperature compensation of stepwise
regression model.

Fig. 6. Bias dynamic temperature compensation of LS-SVM
model.

Figure 3 shows the sampling curves of RLG’s output and
body temperature of RLG. Figure 4 shows the sampling
curves of RLG’s output and body temperature changing
rate of RLG based on the results under the settings of
temperature box mentioned above.

In Fig. 3, the bias of RLG shows better repeatability in
the cycle period, which allowes temperature compensa-
tion for the bias of RLG. In addition, a complex nonlinear
relationship between the bias and temperature is shown.
In Fig. 4, a strong correlation between the bias and tem-
perature changing rate is evident. Thus, the influence
of temperature changing rate on gyro scope’s bias is not
negligible. Stepwise regression analysis is carried out us-
ing three-order variables, regarded as follows[10]: x1 = T ,
x2 = T 2, x3 = T 3, x4 = dT

dt , x5 = (dT
dt )2, x6 = (dT

dt )3,
x7 = T dT

dt , x8 = T 2 dT
dt , and x9 = T (dT

dt )2. Based on
the degree of significance degree of variables on bias, the
insignificant variables x5, x8, and x9 are removed. Sub-
sequently, the regression model of bias composed of terms
of temperature related is obtained. These are the last six
terms. We calibrated the gyroscope’s bias using the data
that have been compensated by the terms of temperature
related at room temperature and obtained the first term:

B =− 0.00960 + 7.1445× 10−4T − 2.6387× 10−5T 2

+ 2.1772× 10−7T 3 + 2.1572× dT

dt
− 4.2769

× 103(
dT

dt
)3 + 1.9163× 10−5T

dT

dt
. (11)

In LS-SVM regression model, the training sample is set
as x = [T dT

dt ] , and bias variation is the training objec-
tive. The data in the first temperature cycle period are
used to train LS-SVM, and the others are used to test the
model. The bias of RLG that has been compensated by
the trained LS-SVM regression model is shown in Fig. 6.
As a comparison, the bias of RLG compensated by the re-
gression model described by Eq. (11) is shown in Fig. 5.

Comparing Figs. 5 with 6, the compensation effect
of LS-SVM model is better than that of stepwise re-
gression model. When the 100 s variance, a commonly
used measuring indicator of RLG’s accuracy is derived,
and the value for the raw data is 0.0102◦/h. The accu-
racy of RLG can reach 0.0016◦/h when the raw data are
compensated by least-squares stepwise regression model.
This represents an increase of 6.375 times than the accu-
racy before compensation. It can reach 0.0011◦/h after
compensation through the proposed LS-SVM model, or
an increase of 9.273 times. This strongly proves that the
proposed LS-SVM model is more feasible and effective
in the dynamic temperature compensation of RLG bias
than least-squares stepwise regression model.

In conclusion, to reduce the influence of temperature
variation on the bias of RLG, we investigate and ap-
ply the LS-SVM, a novel learning machine algorithm to
compensate RLG bias. The LS-SVM regression model,
with the advantages of quick modeling and high mod-
eling accuracy, overcomes the least-squares regression
model’s disadvantage of poor nonlinear fitting capacity.
It also avoids the over-large solving scale, the weakness of
standard SVM. The experimental results show that the
proposed method is useful in reflecting the non-linear re-
lationship between mechanically dithered RLG bias and
temperature, and that the compensation effect is better
than the conventional least-squares regression method.
The LS-SVM model improves considerably the accuracy
of mechanically dithered RLG. Thus, it has great impor-
tance for engineering practice.
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